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Abstract—Motivated by challenging resource allocation is-
sues arising in large-scale wireless and wireline communication
networks, we study distributed network utility maximization
problems with a mixture of concave (e.g., best-effort throughputs)
and nonconcave (e.g., voice/video streaming rates) utilities. In the
first part of the paper, we develop our methodological framework
in the context of a locally coupled networked system, where nodes
represent agents that control a discrete local state. Each node has
a possibly nonconcave local objective function, which depends on
the local state of the node and the local states of its neighbors.
The goal is to maximize the sum of the local objective functions
of all nodes. We devise an iterative randomized algorithm, whose
convergence and optimality properties follow from the classical
framework of Markov Random Fields and Gibbs Measures via
a judiciously selected neighborhood structure. The proposed
algorithm is distributed, asynchronous, requires limited computa-
tional effort per node/iteration, and yields provable convergence
in the limit. In order to demonstrate the scope of the proposed
methodological framework, in the second part of the paper we
show how the method can be applied to two different problems
for which no distributed algorithm with provable convergence
and optimality properties is available. Specifically, we describe
how the proposed methodology provides a distributed mechanism
for solving nonconcave utility maximization problems: 1) arising
in OFDMA cellular networks, through power allocation and user
assignment; 2) arising in multihop wireline networks, through
explicit rate allocation. Several numerical experiments are pre-
sented to illustrate the convergence speed and performance of the
proposed method.

Index Terms—Constrained Gibbs sampler, interacting particle
systems, locally coupled systems, multihop wireline networks, non-
concave utility maximization, OFDMA cellular networks.

I. INTRODUCTION

W E STUDY distributed network utility maximization
problems with a mixture of concave and nonconcave

utilities. First, we develop our methodological framework in
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the context of an abstract locally coupled system, a networked
system where nodes represent agents that control a discrete
local state. Each node has a possibly nonconcave local objec-
tive function, which depends on the local state of the node and
the local states of its neighbors. The implicit assumption is
that neighborhoods are “small” compared to the entire system,
as is typical in many applications. However, the proposed
methodology can be applied to any network structure. The goal
is to maximize the sum of the local objective functions of all
nodes. The hardness of what is in general a nonconvex discrete
optimization problem prohibits the use of standard convex
optimization algorithms or efficient combinatorial approxima-
tion techniques. Instead, we devise an iterative randomized
algorithm whose convergence and optimality properties follow
from the classical framework of Markov Random Fields and
Gibbs Measures, exploiting the fact that the set of global optima
may be associated with the stationary version of a stochastic
process that is governed by simple local interactions. The re-
sulting algorithm is distributed, asynchronous, requires limited
computational effort per node/iteration, and yields provable
convergence in the limit. In the second part of the paper, we
show how the proposed method can be applied to resource
allocation problems arising in wireless and wireline networks,
for which no distributed algorithm with provable convergence
and optimality properties is available.
The main motivation for our work arises from the rapid

growth of wireless and wireline communication networks in
terms of size, scope, and traffic demand. Today’s networks are
expected to support large traffic volumes, and an increasingly
complex mixture of best-effort and delay-sensitive services,
with resources that are fundamentally limited. Thus, there is
need to make the most efficient use of these resources and
achieve optimal performance across several network layers,
different technologies, and various network nodes. On the other
hand, the massive size of today’s networks makes the imple-
mentation of any sort of centralized optimization procedure
extremely difficult. Hence, a key challenge, and the central
thrust of our work, is to devise algorithms that operate in a
distributed fashion, and yet offer guaranteed performance to a
diverse population of users/services.
The existing literature on concave network utility maximiza-

tion problems is significant. The problem of distributed rate con-
trol for concave utility maximization, in the context of multihop
wireline networks, was first tackled in the seminal papers of
Kelly et al. [13] and Low and Lapsley [17]. The proposed al-
gorithms rely crucially on convexity properties and dual-based
decomposition: Link “shadow prices” act as dual variables and
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provide the pivotal element for distributed algorithms. Flows
adjust their rates in response to advertised prices, and links up-
date their prices based on observed aggregate rates. In contrast,
our approach does not rely on any convexity properties and, ad-
ditionally, accommodates integrality constraints. Specifically in
the context of wireless networks, even if the throughput utility
functions are assumed to be concave, the interference between
transmissions typically causes the global objective function to
be nonconcave, prohibiting the use of similar dual-based de-
composition approaches.
Significant work has also been done on distributed optimiza-

tion in wireless networks, e.g., on power allocation problems
in cellular networks [10], [22], [24], on packet scheduling in ad
hoc networks [1], and on load balancing problems [4], [8], [9].
From a methodological standpoint, the work that comes closer
to ours is that of Kauffmann et al. [12], which proposed dis-
tributed channel selection and node association algorithms
based on the Gibbs Sampler, in the context of multichannel
802.11 WLANs. We also refer to the follow-up papers [6] and
[7], which utilize this methodological approach for joint power
allocation and user assignment in cellular networks. These
papers, however, are restricted to a very specific utility function
and hinge on a somewhat arbitrary notion of interference
minimization, which is only connected to the optimization
objective in a heuristic sense. A more consistent approach for
achieving proportional fairness in an 802.11 WLAN setting
was devised by Hou and Gupta [11]. Further related work is
reported by Zhou et al. [25], describing an annealed Gibbs
sampling approach for power control and adaptive modulation.
Our methodological apparatus is developed in a more com-
prehensive framework, allowing for arbitrary utility functions
and generic notions of local coupling [16]. Also, we pursue
applications to wireless and wireline networks with scheduled
access, as opposed to 802.11 WLANs with randomized access.
Another recent study by Qian et al. [18] proposed a Gibbs
Sampler-based algorithm that solves a generic power allocation
problem in wireless networks. Their algorithm, however, is
essentially not distributed, in the sense that the overhead asso-
ciated with each iteration is of the order of magnitude of the
entire network. In contrast, the computational requirements and
the communication overhead of the algorithm proposed here
scale with the size of typically small neighborhoods. Finally,
the work of Rangan and Madan [19] proposed algorithms for
solving approximately a power allocation problem in OFDMA
systems. These algorithms are based on Belief Propagation,
and while similar in spirit to our approach, they are only known
to converge in acyclic graphs, a property that is usually violated
in wireless networks. In contrast, our approach offers provable
convergence for any network topology.
The main contribution of this paper is a distributed algo-

rithm for network utility maximization in locally coupled sys-
tems, applicable to problems arising in both wireless and wire-
line networks. The proposedmethod utilizes the classical frame-
work of Markov Random Fields and Gibbs Measures. Typi-
cally, algorithms that are based on this framework are: 1) dis-
tributed, but then do not have guaranteed convergence [19], or
are restricted to specialized objective functions, e.g., [6], [7],
[11], and [12]; or 2) allow for general objective functions, but

then require global state information [18]. We identify a quite
general setting, namely locally coupled systems with separable
global objectives, where the framework of Markov Random
Fields and GibbsMeasures can accommodate arbitrary local ob-
jective functions, and yet retain the distributed nature of updates
and provable convergence properties.
The remainder of the paper is organized as follows. In

Section II, we provide a nontechnical overview of our approach
to distributed utility maximization in locally coupled systems.
In Section III, we define formally a locally coupled system,
formulate a global optimization problem, and describe a generic
methodology for finding the global optimum in a distributed
fashion. Also, we establish the convergence of the proposed
algorithm and discuss variations and extensions, as well as
special cases where the communication and computational
requirements can be further reduced. In Section IV, we show
how the proposed method can be applied for distributed power
allocation and user assignment in wireless OFDMA cellular
networks. Section V presents another application of the pro-
posed framework, this time in the context of multihop wireline
networks. In Section VI, we make some concluding remarks
and suggest avenues for future research.

II. HIGH-LEVEL DISCUSSION OF PROPOSED METHODOLOGY

In this section we introduce the proposed methodology, high-
lighting the central features and indicating key distinctions with
existing approaches, with technical details postponed for later
sections.
Consider a network consisting of four nodes , , , and ,

with local states , , , and , respectively. The nodes
could represent actual physical objects, e.g., wireless transmit-
ters, wired links, or storage devices, but could also correspond to
logical entities, e.g., network routes, radio links, or traffic flows.
The local states may be interpreted as (possibly vector-valued)
decision variables or parameter settings that are individually
controlled by the corresponding nodes. Depending on the spe-
cific context, the local states could represent various quantities,
e.g., power levels, transmission frequencies, time allocations,
data rates, or sets of content items. Each node has a local ob-
jective function , which depends on the state of the node
itself, and on the states of other nodes that interact with it, in
an appropriate sense. For example, the local objective function
could provide a measure for the throughput utility of a wireless
device, which clearly depends not only on its own power level
and frequency, but also on those of nearby transmitters due to
interference. For concreteness, we assume the following:

depends on and ;
depends on , as well as and ;
depends on , as well as and ;
depends on and .

The mutual dependence of the local objective functions may
be represented in terms of an interaction graph, as depicted in
Fig. 1(a), where two nodes are connected if the local objec-
tive function of one is affected by the local state of the other.
Crucially, the global objective function is
simply the sum of the local objective functions and may be in-
terpreted as the aggregate network utility.
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Fig. 1. Separability and functional dependencies: (a) “one-tier” interaction
graph ; (b) “two-tier” CGS graph ; (c) pruned CGS graph in the case where
the local objective function itself is separable into multiple components.

We tacitly assume that the various nodes are cooperative
and wish to maximize the aggregate network utility, as mea-
sured by the global objective function. Since the local states
are individually controlled, we seek an approach where the
various nodes perform updates in an asynchronous and dis-
tributed fashion. For such an approach to have a chance of
maximizing the aggregate network utility, individual nodes
should somehow account for their impact on the global
objective function when performing state updates. Specifi-
cally in our methodology, an individual node, say node ,
will select a local state with probability proportional to

, with
some strictly positive coefficient. The latter update rule is rem-
iniscent of a Gibbs Sampler, except that we allow the candidate
state to be limited to a random subset of the local state
space, and hence we shall refer to it as a Constrained Gibbs
Sampler (CGS) algorithm. The rule is also somewhat similar
in spirit to simulated annealing, with playing the role of the
temperature. In that context, though, no notion of local state
exists, and only a single candidate (global) state is considered
and then accepted with certain probability.
A priori it is far from obvious that the CGS algorithm will

produce a globally optimal state, or even converge at all. In
order to establish the convergence, we interpret the local up-
dates as transitions of a reversibleMarkov chain. In equilibrium,
the probability of state is proportional to

, which defines a Gibbs Field (GF)
and, according to the Hammersley–Clifford theorem, aMarkov
Random Field (MRF); see [5, Ch. 7, Theorem 2.2]. As ,
the latter distribution concentrates on the set of states where
the global objective function attains a maximum. In that sense,
the CGS algorithm ensures provable convergence to an approx-
imate global optimum for low values of ; see Propositions 1–3
in Section III.
We note that the above arguments do not rely on specific

properties of the global objective function, and convergence
to an (approximate) global optimum is, in fact, guaranteed for
an arbitrary function . This allows, in particular, noncon-
cave utility functions, in sharp contrast to gradient methods for
convex utility maximization, which may get trapped in a local
optimum in our framework. It is important to observe, how-
ever, that for an arbitrary function , the update of a par-
ticular local state would typically involve knowledge of all the
local states across the network, which would essentially be tan-
tamount to a centralized operation. As we will show, the notion
of local coupling plays a critical role in order to avoid that, and
enables a distributed implementation.

A key thrust of our methodological framework is that a
separable global objective function only requires information
exchange within the two-tier neighborhoods of the interaction
graph. In order to illustrate that, suppose that a particular
node, say node , performs an update of its local state. By
virtue of the separability of the objective function, the quantity

only depends on the candidate state
through the terms and , i.e., the
local objective functions of node and its neighbor , and
not the terms and . Hence, the
relative selection probabilities for the various candidate states
at can be calculated based on and alone, without any
knowledge of .
As we will demonstrate in the next section, consideration of

local objective functions of neighbors, and thus local state infor-
mation for a two-tier neighborhood, in fact suffices in general.
The graph induced by the two-tier neighborhoods, as depicted
in Fig. 1(b) for the four-node network, will be called the CGS
graph. In scenarios where these two-tier neighborhoods are rel-
atively small compared to the size of the entire network—which
we refer to as locally coupled systems—the CGS graph is sparse,
and the amount of information exchange is commensurately
small.
In other words, the locality and separability of the objective

function translate into a distributed operation of the CGS algo-
rithm. Fortunately, separable objective functions and local cou-
pling arise quite naturally in network optimization problems. In
wireless communications, local coupling is due to geographical
proximity because interference is usually limited in range. In
routing and content management, locality is not just geograph-
ical, but also due the fact that a path intersects a small fraction
of all network paths.
We conclude this section with a few remarks relating to the

significance of the two-tier neighborhood structure.
1) As we will show, the two-tier neighborhood structure suf-

fices for the CGS algorithm to converge to the global optimum
when the global objective function is separable across nodes.
Thus, additional state information does not make any difference
in the local updates. Even though the two-tier neighborhood is in
general necessary, in some specific cases it is not; in particular,
when the local objective functions are additionally separable
across neighbors. For example, if the local objective function
of node is of the form

, then the quantity only de-
pends on the candidate state through the terms
and , and not on any of the other terms. Hence,
node no longer needs to know , and the edge between
nodes A and C can be eliminated from the CGS graph, as il-
lustrated in Fig. 1(c).
A specific scenario of interest is

, with a 0–1 variable indicating whether
node selects option , which in wireless networks could cor-
respond to an access point or a transmission channel. The local
objective function of a node then represents (minus) the number
of competing users at the same access point, or the number
of interfering nodes with the same transmission channel, as
considered in the work of Kauffman et al. [12]. In these cases,
state information from direct neighbors is sufficient, and no
need exists for exchange of states with second-tier neighbors;
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2) The role of the two-tier neighborhood structure may seem
at odds with the fact that Gibbs Samplers for network opti-
mization problems normally operate in terms of so-called local
energy functions. These local energy functions only involve
cliques, whichmust all be contained within single-tier neighbor-
hoods. In order to resolve this paradox, we observe that this set-
ting requires the global objective function to be derivable from
a potential, i.e., be a sum over cliques in the interaction graph.
This setting only allows for rather specialized global objective
functions that can be expressed as sum over edges of the interac-
tion graph, which is consistent with the earlier observation that
single-tier neighborhoods suffice when the local objective func-
tions are separable.
The separable global objective functions that we consider

generally cannot be written as potentials with respect to the in-
teraction graph, but can be expressed as sums over cliques in
the CGS graph, as we defined it. For example, in the four-node
network the global objective function is indeed the sum over the
cliques , , , and in the CGS
graph. Indeed, our methodology is essentially a (Constrained)
Gibbs Sampler acting on the CGS graph. Thus, the local energy
function of a node in the CGS graph captures the sum of the
local objective functions of that node itself and its direct neigh-
bors in the interaction graph;
3) The significance of the two-tier neighborhood structure is

also corroborated by known convergence issues of Belief Propa-
gation methods. These only involve information exchange with
direct neighbors in the interaction graph and, in general, do not
guarantee convergence to a globally stable state. We expect that
the two-tier neighborhood structure may help resolve such con-
vergence issues, but we will not pursue this thread further in this
paper.

III. DISTRIBUTED OPTIMIZATION IN LOCALLY COUPLED
SYSTEMS

A. Model Description and Problem Formulation

Throughout the paper we use , , and to denote the sets
of integers, positive integers, and real numbers, respectively.
We denote by and the sets of nonnegative integers and
nonnegative real numbers, and use to denote the cartesian
product of copies of . We use to represent the in-
dicator function of event . The cardinality of set is denoted

by . Finally, we use “ ” and “ ” to denote convergence
in distribution and almost sure convergence of a sequence of
random variables, respectively.
We consider a networked system, represented by an undi-

rected graph , where is the set of nodes and the
set of edges. The edges of the graph determine a neighborhood
system on the set of nodes. We denote the set of neighbors of
node by . We assume that has
no self loops, which implies that the neighborhood set does
not include node itself. By adding node , we obtain the ex-
tended neighborhood set of node , denoted by .
Associated with each node are a local state and a

local objective function .
The local state of node is a -dimensional vector and can

be interpreted as a set of decision variables or parameter settings
that are locally controlled by node . We denote the th compo-

nent of by , where . The component
takes values in a finite set of nonnegative real numbers . The
components of the local state have to satisfy a set of linear
inequality constraints, i.e., there exist a nonnegative real-valued
matrix and vector , such that . The local state
space of node , denoted by , consists of all allowable -tu-
ples: . We do allow the sets

and the linear inequality constraints to be arbitrary, but as-
sume that the resulting local state space is nonempty.
The local objective function of node is a possibly noncon-

cave real-valued function of the local states of node and its
neighbors: .
The edges of the graph determine the functional dependencies

between the various nodes: the local state of node affects only
the local objective functions of the nodes in , and the local
objective function of node depends only on the local states of
nodes in . For notational convenience, we denote the set of
local states of the nodes in by .
The global state of the network is defined as the set of local

states of all nodes. Naturally, the global state space is the product
space of all local state spaces

The global objective function is defined as the sum of all local
objective functions

Our goal is to maximize the global objective function
maximize (x)
subject to .

(1)

We denote by the set of solutions of this optimization
problem, which we call globally optimal states, and assume
that is a proper subset of .
A remark should be made on the nature of the local con-

straints: We assumed that they have the form of linear inequality
constraints, and that they are at a “node level,” as is sufficient
for the applications that we investigate in the second part of the
paper. However, the algorithmic framework that we introduce
in Section III-B extends to any type of nonlinear constraints,
possibly at a “neighborhood level,” as long as a technical irre-
ducibility condition is satisfied.

B. Constrained Gibbs Sampler

In this section, we propose a randomized algorithm that ap-
proximates an optimal solution, while operating in a distributed
and asynchronous fashion. Our roadmap is as follows. We view
the global state of the system as a random field on the global
state space . First, we show that there exists a neighborhood
system on , defining a graph , and a Gibbs po-
tential relative to , such that the global objective function can
be written as the energy stemming from this potential. Then, we
invoke the Gibbs–Markov equivalence to show that the system
is a GF with steady-state distribution

(2)
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if and only if the random field is Markovian with respect to
. This equivalence gives directly the local specification of the

MRF and, thus, the distributed algorithm that we seek.
Consider the undirected graph , where
if and only if , with

representing the “two-tier” neighborhood set of node . It is
easily verified that if , for some , then

and . Also, if , then
and . It follows that the neighborhood set forms
a (possibly nonmaximal) clique in the graph . Let rep-
resent the collection of all cliques of the graph . Then, the
global objective function may be written as

where .
Summarizing, by defining the potential of the clique to

be equal to , for all , and the potential of all
other cliques to be zero, we have shown that the global objec-
tive function is equal to the energy that derives from this Gibbs
potential relative to .
In our case, a natural positivity condition is satisfied, and the

Gibbs–Markov equivalence (see [5, Section 7.2]) implies that
the system is a GF following (2) if and only if the random field is
Markovian with respect to . Moreover, the local specification
of this MRF is given by

for all .
Notice that the edge set includes the edge set of the orig-

inal network graph, with the inclusion being strict, except for the
special case where the original network graph is a collection of
cliques. Indeed, while the global objective function is ad-
ditive over nodes, it does not admit a clique representation with
respect to the original network graph. Informally speaking, in
order for the local objective functions to be potential functions,
the neighborhood sets should be cliques, which is not the
case in general. This can be brought about by adding edges be-
tween nodes in that are not directly connected in the orig-
inal network graph, and this is precisely how the graph is
constructed.
Unfortunately, the following issue may arise when this pro-

cedure is viewed from an algorithmic standpoint: Before node
updates its local state, it needs to compute an exponential sum
utility function for every state in its local state space . In many
applications of interest, and in particular in OFDMA systems,

some local state spaces can be very large. In these situations,
the computational and memory requirements of each iteration
are prohibitive. We address this issue with the following mod-
ification of the classical framework of GF/MRF, which we call
the Constrained Gibbs Sampler (CGS) algorithm.

A positive constant is fixed, which is called the
temperature of the algorithm, and is known to all nodes.
Each node fixes a positive integer

, which represents the number
of components that are modified per local state update.
Also, each node has a clock. The time periods between
consecutive ticks of this clock are independent and
identically distributed random variables, following the
exponential distribution with rate . The clocks of
different nodes are mutually independent.
Whenever its clock ticks, node :
1) requests the local states of all nodes in its two-tier
neighborhood ;

2) picks uniformly at random out of the
components of its local state. Let represent the
set of these components;

3) determines the values that the components in
are allowed to take. Let represent the
components of except those in , together with
the local states in the two-tier neighborhood of .
The local constraints of node are satisfied only
for a subset of the values in , which we
denote by ;

4) picks values for the components in from the
set , according to the conditional
probability mass function

(3)

We track the evolution of the system in discrete time, namely
right after state transitions. We denote by the global state
of the system right after the th state transition, . The fol-
lowing proposition characterizes the evolution and convergence
of a locally coupled system under the CGS algorithm.
Proposition 1: (Convergence of CGS): Under the CGS algo-

rithm the sequence is a time-homogeneous, ir-
reducible, aperiodic, and reversible Markov chain on . Hence,
there exists a generic random variable on , following the Gibbs
distribution of (2), such that for all

and
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Proof: First of all, it is straightforward to verify that the
evolution of the global state in discrete time is a time-homoge-
neous Markov chain on the finite state space .
Under the dynamics induced by the CGS algorithm, every

global state has a self-loop of positive probability. This implies
that this Markov chain is aperiodic.
Next, we show that the Markov chain is irre-

ducible. Since a global state is a collection of local states, and
all constraints are purely local in nature, it is sufficient to es-
tablish irreducibility at a local level. Consider any node
and any two local states . We will establish that if
the local state of node starts from , it ends in with pos-
itive probability. Denote by the -dimensional vector
containing the minimum values of the sets . Since all the
elements of matrix and vector are nonegative, is
a feasible local state of node , i.e., . Clearly, any
local state dominates componentwise. Hence,
starting from any , the local state of node can become

with positive probability, after local state up-
dates. This is intuitively clear since the local constraints prevent
the various components from taking higher values, not smaller
ones. In state , all inequality constraints contain as much
slack as possible, and the CGS algorithm can move to any local
state as if unconstrained. Again, this can happen with
positive probability, after local state updates.
We now show that the Markov chain is also reversible, with

steady-state distribution following the Gibbs form of (2). In
order to do that, we must verify that, for all

where is the one-step transition probability to global
state , conditional on being in global state , and similar for

.
Let us begin with some easy cases. If , then the re-

versibility condition above is trivially satisfied. If states and
differ in more than one local states, then both and

are equal to zero under the CGS dynamics, and the re-
versibility condition above is satisfied. If states and differ
in exactly one local state, let it be the local state of node ,
but in more than components, then both and
are equal to zero under the CGS dynamics, and the reversibility
condition is, again, satisfied.
Thus, the only interesting case is when global states and
differ in exactly one local state; let it be the local state of

node , and , where is the set
of components in which states and differ. In this case, the
transition probabilities and are strictly positive,
and the reversibility condition takes the form

At this point, let us introduce the following notation: Condi-
tional on a local state update, denote by the event that it is
node that updates its local state. Conditional on , denote
by the event that node updates the components in the
set , where . Finally, we use for the set of

combinations of components of the local state of node . We
can write

Under the CGS dynamics, the events and do not
depend on the state before the transition . Moreover, the con-
ditional probability is nonzero, only when
the set of components to be updated, , includes all the com-
ponents in . Then, this conditional probability is given
by the Gibbs distribution. This implies that

Similarly

Consequently

Summarizing, the sequence is a time-homo-
geneous, irreducible, aperiodic, and reversible Markov chain
on the finite state space , and its (unique) steady-state dis-
tribution follows the Gibbs distribution of (2). Then, standard
Markov chain theory implies the convergence properties of
Proposition 1.
Let us summarize some qualitative properties of the CGS al-

gorithm that relate to its applicability in real-world systems.
1) It is distributed, as demonstrated in (3).
2) It is asynchronous, in the sense that each node updates its
local state based on its own clock, which is independent
of the clocks of other nodes.

3) Each iteration requires limited computational effort,
provided the parameters are fixed at relatively small
values.

4) The system evolves in a “smooth” way since few com-
ponents of just one local state are updated per iteration.

5) It is suitable for systems with heterogeneous nodes since
the rate at which each node updates its local state is pro-
portional to the dimensionality of this space.

A remark should be made on the communication overhead
of the proposed algorithm. Each iteration requires the updating
node to acquire the local states of all nodes in its two-tier neigh-
borhood. This may result in significant communication over-
head if local state spaces are large. Alternative implementation
schemes can be considered and may be more appropriate de-
pending on the application, e.g., each neighbor computes its ob-
jective function value and communicates it to the updating node,
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in a “push” rather than “pull” manner. Moreover, the CGS algo-
rithm can be modified to include asynchronous updates, i.e., a
node updates its local state based on possibly outdated informa-
tion. We conjecture that convergence results similar to Propo-
sition 1 can be established in that case as well, under some ad-
ditional restrictions; see [2, Ch. 6 and 7]. It should be noted,
though, that the substantially reduced communication overhead
will typically come at the expense of a much slower conver-
gence rate.
Another remark should be made on the computational effort

per node/iteration: The implicit assumption is that local state
updates are done instantaneously. Thus, in the event that the
clocks of neighboring nodes tick within a very short period of
time, the node that followswill observe the updated local state of
the node the precedes. Therefore, even though in theory the CGS
algorithm would work with any values of the parameters,
in practice these values have to be “small.” The exact values
will depend on the sizes of local state spaces and the computing
capabilities of each node.
As a final related remark, we have assumed the global objec-

tive function to be separable across
nodes, but have allowed the local objective functions
to be arbitrary. In many applications of interest, however, we
may have (partly) separable local objective functions, e.g.,

where is a collection of subsets of . The two-tier neigh-
borhood sets can then be restricted to

and the functions in the local update rule for
node can be replaced by

This can prune a significant amount of edges in the CGS graph.
In particular, if so that

i.e., the local objective functions are separable across neighbors,
then reduces to the set of direct neighbors , and the
CGS graph coincides with the interaction graph.

C. Optimality Considerations

In this section, we illustrate how the Gibbs distribution relates
to the solution of the optimization problem (1). More specifi-
cally, we focus on the probability that the system is in a globally
optimal state, in steady state

and explore the optimality properties of the CGS algorithm at
different temperatures.Moreover, we present a modified version

of the CGS algorithm that solves the optimization problem (1)
exactly.
We start with two results that stem from well-known mono-

tonicity properties of the Gibbs distribution.
Proposition 2: The probability is a monotonically

decreasing function of the temperature .
Proposition 3: The probability can be made arbi-

trarily close to one by choosing a sufficiently small temperature,
i.e.,

Unfortunately, these qualitative insights are difficult to quan-
tify without making specific assumptions about the state spaces
and the objective functions. Moreover, there is a fundamental
tradeoff: Cheeger’s inequality (see [21, Theorem 2]) suggests
that running the CGS algorithm at a lower temperature results,
typically, in a longer time period to reach equilibrium.
Let us elaborate on the mixing time of the system, i.e., the

time that the Markov chain needs to get close to steady state, in
total variation distance. Clearly, reaching steady-state behavior
rather quickly is very important in many applications. In the
context of large systems, “rapid mixing” is usually defined as
polynomial scaling of the mixing time in the number of nodes. It
should be noted that concrete results on mixing times are avail-
able only for Markov chains with much simpler structure than
ours, e.g., see [15] and the references therein. On the other hand,
it is well known that the optimization problem (1) is not only
NP-hard, but also inapproximable [14], i.e., a polynomial-time
algorithm that approximates an optimal solution most likely
does not exist. This suggests that, under the CGS algorithm, ei-
ther: 1) the Markov chain mixes rapidly, but it takes exponential
time to find an optimal solution in steady state (this is expected
to happen at high temperatures); or 2) the Markov chain mixes
slowly, but it takes polynomial time to find an optimal solution
in steady state (this is expected to happen at low temperatures).
Thus, in the general (worst) case, one should not expect both
good transient and good steady-state behavior for any fixed tem-
perature. However, the simulations presented in Section IV-C
reveal that the CGS algorithm achieves relatively good tran-
sient and steady-state performance in the wireless OFDMA ap-
plication, possibly by (implicitly) taking advantage of its special
structure.
Up until now, the discussion has been limited to the case of

fixed temperature. Propositions 2 and 3 motivate the following
modification of CGS, which we call the annealed CGS algo-
rithm: The temperature starts from a relatively high value and
decreases with time at a very slow rate. We denote by
the temperature at the th global state transition. The monoton-
ically decreasing sequence is usually called the
cooling schedule. The following result implies that the annealed
CGS algorithm solves the optimization problem (1) exactly, pro-
vided the temperature is reduced at a sufficiently slow rate.
Proposition 4 (Annealed CGS): Consider the locally cou-

pled system described above under the annealed CGS algorithm,
with cooling schedule . If the constant is suf-
ficiently large, then
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Proof: The result follows directly from [23, Proposi-
tion 4.1 and Corollary 4.1].
Similar results have appeared in the simulated annealing liter-

ature; see, for instance, [3]. Unfortunately, for most systems of
interest, the convergence of the corresponding inhomogeneous
Markov chain occurs at an extremely slow rate, rendering it
ill-suited for practical purposes.

IV. DISTRIBUTED RESOURCE ALLOCATION IN OFDMA
CELLULAR NETWORKS

In Section III, we presented a generic methodology for
distributed optimization in locally coupled systems. We now
demonstrate how this methodology can be applied for dis-
tributed resource allocation in OFDMA cellular networks.

A. Model Description and Problem Formulation

We consider the downlink of a wireless OFDMA cellular net-
work and denote by the set of cells (base
stations), by the set of users, and by

the set of frequencies (subbands).
Each user has two attributes: 1) a throughput utility

function ; and 2) aminimum-throughput requirement .
The minimum-throughput requirement could reflect an intrinsic
rate requirement for a real-time (delay-sensitive) application,
such as voice or video streaming, but it could also represent
a minimum-rate guarantee for a best-effort session. The spe-
cial case may be interpreted as a purely best-effort
user. The case where is a step or “S-shaped” function may
be thought of as a purely real-time user, who has an intrinsic
rate requirement, but enjoys little or no benefit from receiving
a higher rate. The goal is to maximize the aggregate throughput
utility of the users while satisfying their minimum-throughput
requirements.
Let the 0–1 variable indicate whether user is as-

signed to cell or not. Each user can be served by only
one cell, i.e., , for all .
Each cell can allocate power to any frequency, in discrete

quanta . We denote by the amount of power al-
located by cell to frequency . Cell operates
under a maximum total transmit power constraint , i.e.,

, for all .
Let be the channel gain from cell to user , which is

assumed to be fixed. We further assume that the channel gain
from a cell to a user can be neglected and treated as zero outside
a certain finite range. Strictly speaking, of course, channel gains
are never zero, but simply neglecting all channel gains below a
small threshold value provides a suitable approximation for all
practical purposes.
The signal-to-noise-and-interference ratio (SINR) of user

when served by cell on frequency is equal to

with representing the thermal background noise.
We assume the existence of a function that describes

how the feasible transmission rates depend on the SINR. A pop-
ular choice for is the logarithmic function, as dictated by
the Shannon–Hartley theorem. For our purposes, this function

can be arbitrary, as long as it satisfies . Thus,
is the rate received by user , when served by cell on

frequency .
Let be the fraction of time granted by cell to user on

frequency , with the natural constraint . The
total throughput received by user can be expressed as

Note that it only makes sense for a cell to grant time to a user
that it serves, and on a frequency to which it allocates power.
Hence, we should have when or , but
the expressions for and show that there is no need to
explicitly include such constraints. It is crucial to observe that
the interference term in the SINR causes the user throughputs
to be nonconcave functions of the power allocation variables
, for all reasonable choices of . This, in turn, causes the

utility maximization problem to be nonconvex, even when the
utility functions are concave and the integrality constraints are
ignored.
Summarizing, our goal is to maximize the aggregate

throughput utility of the users, while satisfying their min-
imum-throughput requirements, with the decision variables at
hand being: 1) the assignment of users to cells, as represented in
the variables , which will be called the assignment problem;
2) the allocation of power to frequencies in each cell, as de-
scribed by the variables , which will be referred to as the
power allocation problem; 3) the allocation of time fractions to
users within each cell on each frequency, as specified by the
variables , which will be termed the scheduling problem. In
mathematical terms, we wish to solve the following nonconvex,
typically large-scale, mixed integer optimization problem

maximize

subject to

Throughout the remainder of the section, we tacitly assume
that the above problem has at least one feasible solution.
Note that the scheduling problem is entirely local in nature,

since the time fractions are locally controlled, and only have an
impact on the local objective function. Thus, it can be handled
by the scheduling discipline without any impact on, or from,
other cells. In contrast, the other two problems are global in na-
ture. In the power allocation problem, the variables are locally
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controlled but have an impact on neighboring cells as well. In
the user assignment problem, the decision variables are subject
to global constraints and affect surrounding cells. This obser-
vation motivates the following reformulation of the problem:
Let and be the global user assignment
and power allocation matrices. Then, the resource allocation
problem at hand can be written as

maximize (4)

subject to

where is the optimal value of the following scheduling
problem:

maximize

subject to

The latter problem amounts to the maximization of a sum of
utility functions subject to linear constraints. When the utility
functions are concave, as is typically the case, this problem can
be efficiently solved using standard dual-based optimization
techniques. In this regard, it is worth observing that there are
well-established scheduling algorithms in place for allotting
time-frequency slots to the various users in LTE systems.
These algorithms commonly work toward a similar aggregate
throughput utility optimization objective as assumed above,
be it in a possibly implicit or approximate sense. Although
these algorithms typically do not solve for the time fractions
in an explicit form, they usually do keep track of the smoothed
throughput values of the various users, thus enabling the (ap-
proximate) calculation of the functions .

B. Distributed Method for Resource Allocation

We now describe how the resource allocation problem formu-
lated in Section IV-A can be couched into the proposed method-
ological framework for distributed optimization.
First of all, note that implies that , for all

. We define

to be the set of cells that have a nonzero channel gain to user
and could potentially serve this user. Similarly, we define

to be the set of users to which cell has a nonzero channel gain
and could potentially be served by this cell. Also, let

be the set of cells that have at least one user “in common” with
cell , including cell , and be the same set
without cell . Using this notation, we can write

The joint global problem (4) may be mapped to the generic
optimization problem (1) as follows. We consider two cate-
gories of nodes, one category corresponding to the cells, and
the other to users. Specifically, we define , with

and .
The local state variable of node corresponds to the

power allocation vector , and the local
state space is as
before. The local utility function of node is .
The local state variable of node consists of the as-

signment vector , and the local state space
is . Notice that in
order to fit the problem formulation to the theoretical frame-
work of Section II, we have relaxed the equality constraint to
an inequality one, i.e., a user can be assigned to at most one
cell. Thus, there is a possibility that a user is assigned to no cell
at all. This minor complication can be dealt with by defining the
objective function of node to be ,
where is a large positive constant, and the equality is
meant componentwise.
The neighborhood set of node is ,

and the neighborhood set of node is .
With the above definitions, the CGS algorithm can be applied,

as specified in Section III. We emphasize the distributed nature
of the operation, in the sense that a local update only relies on
information from the cell itself and those in a two-tier neighbor-
hood. Specifically, conducting an update at cell only involves
the values of , . In order to obtain

these values, each of the cells can first pass its
power allocation vector (e.g., by broadcasting) to the cells
in , i.e., the neighbors it has in common with cell ,
so that each of the cells knows and . (In
fact, the latter values can also be simply obtained frommeasure-
ments if pilot signal strengths are known.) With that knowledge,
each of the cells can then compute .
The latter calculation essentially amounts to solving the sched-
uling problem at node , which can be done locally and effi-
ciently in case the utility functions are concave, as mentioned
earlier. Once the values of have been cal-
culated, the cells can pass them to cell . Likewise,
performing an update by user only involves the values of

and , . The
former value can be trivially determined locally, while the latter
values can be obtained in a similar fashion as described above.
As before, an alternative option is to take advantage of the fact
that in practice there are well-established scheduling algorithms
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in place that work toward a similar aggregate throughput utility
objective. Thus, the cells can simply use the measured
user throughput values produced by these algorithms to estimate
the local objective functions rather than calculate them.
We note that the above formulation can be modified slightly

in order to solve the “Channel Selection” problem considered
in Kauffmann et al. [12], even though the latter is cast in the
context of IEEE 802.11 WLANs rather than OFDMA cellular
networks. Cell can use any frequency, but is only allowed
to select a single one to operate on and is assumed to transmit at
a fixed power level . In our formulation, this can be repre-
sented with power quanta . By choosing
the local objective function of cell to be

the CGS algorithm minimizes the total interference.

C. Numerical Experiments

We now present the numerical experiments that we have
conducted to examine the performance of the proposed dis-
tributed optimization approach in the context of OFDMA
cellular networks.
In the numerical experiments presented below, we have as-

sumed that the assignment of users to cells is fixed, and that
each user is assigned to its nearest cell, as it is usually done
in practice. Moreover, we implement the following approxima-
tion to the CGS algorithm: Every time a cell updates its power
allocation, it selects one of three possible local states with a
certain probability: 1) lower the power level by on a ran-
domly selected frequency; 2) raise the power level by on a
randomly selected frequency; 3) swap an amount of power
between two randomly selected frequencies. If the selected can-
didate state is infeasible (because the power level allocated to
one of the frequencies would become negative or because the
maximum available power would be exceeded) or identical to
the current one, then we simply keep the current state. Other-
wise, the selected candidate state becomes the new local state
with probability

This mechanism falls in the general framework of
Metropolis–Hastings sampling and induces dynamics very
similar to CGS.
In order to benchmark the performance of the proposed dis-

tributed optimization approach, the litmus test would obviously
be to compare the solution to the global optimum. Unfortu-
nately, no computationally viable method is available to find
the global optimum in all but the smallest networks. Note that
the size of the local state spaces at each of the cell sites equals
the number of ways to allocate up to power quanta
among frequencies, i.e., , and the size of
the collective state space is . Also, recall that the evaluation
of the global objective function for a given state involves the
calculation of local objective functions, which in turn entails
the solution to the local scheduling problem. This solution can
be found efficiently for concave utility functions, but, typically,

still requires a nontrivial computation effort. Thus, in order for
the global optimum to be tractable, it is critical to limit the size
of the global state space and confine to relatively small values
of , , and . Moreover, if the assignment of users to
cells is included as part of the problem, then this will multiply
the size of the global state space by an additional factor .
In light of the above considerations, in the first experi-

ment we focus on a system that is sufficiently small so that
the global optimum can be found by sheer enumeration.
Specifically, we consider a system with cell sites
located in a rectangular coverage area of by

km. In order to avoid boundary effects, we
adopt the usual assumption that the edges are connected in a
“wraparound” manner. We distinguish two scenarios for the
locations of the cell sites: 1) a regular hexagonal pattern; and
2) a pseudo-random placement. In scenario 1, the four cell sites
have coordinates ,

, ,
. Due to the wraparound

boundary, the locations form a hexagonal pattern, with a dis-
tance between each pair of cell sites of km. In scenario 2,
the coordinates of the four cell sites are randomly perturbed,
and the th cell site is located in a rectangle of size by

km centered around .
The system supports a population of users, which

are distributed uniformly at random across the coverage area. In
order to limit the size of the state space for the above-mentioned
reasons, we fix the assignment of users to cells and assume that
each user is served by the nearest cell site. In addition, we as-
sume that there are (only) frequencies.
The assumptions concerning channel gains are broadly

consistent with the standard 3GPP propagation models. In
particular, the channel gain value from cell site to user
is , with the distance between cell site
and user (in kilometers), and , i.e.,

dB , with a path-loss exponent
and . The thermal background noise is
dBm Hz , and the bandwidth per frequency is

1 MHz. Each cell site has a maximum total transmit power
budget of . In order to limit the size of the
state space, we assume that power can only be allocated to
the various frequencies in quanta of W. The fea-
sible transmission rate as a function of SINR is given by

(kb/s), with .
We consider Proportional Fairness as the optimization ob-

jective, i.e., each user has a logarithmic throughput utility
function , and assume that there are no explicit
minimum-throughput requirements specified. In order to fa-
cilitate a comparison to later experiments with larger numbers
of users, we normalize the aggregate throughput utility by the
number of users so as to obtain the average throughput utility
per user: .
A brute-force search (the global state space consists of

states) yields that, in the globally optimal
solution, the average throughput utility per user equals 5.947
and 5.938 in the case of a strictly hexagonal cell site arrange-
ment and irregular placement, respectively. Fig. 2(a) and (b)
plots the objective value produced by the proposed distributed
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Fig. 2. Each chart consists of three curves: 1) the current solution resulting
from the CGS algorithm (light dashed line); 2) the candidate solution, which is
considered but not necessarily accepted by CGS (dotted line); and 3) the best
solution found up to given iteration (black dashed line). The charts correspond
to frequencies, cell sites, and users, for a (a) hexagonal
and (b) irregular cell site placement.

optimization approach with a temperature value as
function of the number of iterations for a random initial state.
The various curves correspond to the current solution, the
candidate solution (the spikes), and the best solution so far
(the upper envelope). We observe convergence to the global
optimum in about 80 iterations for the regular cell site arrange-
ment and about 150 iterations for the perturbed placement.
We obtained similar results for two other initial states: 1) a
full reuse pattern with the maximum total power uniformly
distributed across all frequencies; and 2) a factor-four reuse
pattern with the maximum total power equally allocated to a
quarter of the frequencies (so just a single frequency when

), with the latter initial state being somewhat worse and
causing slower convergence.
We next consider the same system with rather than

frequencies, and reduce the size of the power quanta
from to W. This increases the size of each of the
local state spaces from 70 to 4845 (almost by a factor 70), and
thus increases the size of the collective state space by almost a
factor to around , making it impos-
sible to obtain the global optimum via enumeration. Since the
same resource allocation can be reproduced (by simply bundling
the frequencies into groups of four), the globally optimal solu-
tion should, however, improve. As before, Fig. 3(a) and (b) plots
the objective value as function of the number of iterations for a
random initial state and indeed shows comparable normalized
throughput utility values as in the previous scenario. We con-
tinue to observe convergence, be it at a somewhat slower rate
now due to the larger number of frequencies. For the initial state

Fig. 3. Each chart consists of three curves: 1) the current solution resulting
from the CGS algorithm (light dashed line); 2) the candidate solution, which is
considered but not necessarily accepted by CGS (dotted line); and 3) the best
solution found up to given iteration (black dashed line). The charts correspond to

frequencies, cell sites, and users, for a (a) hexagonal
and (b) irregular cell site placement.

with a factor-four reuse pattern (results are not shown), we saw
sluggish convergence, suggesting a persistent local optimum.
In the third set of experiments presented in Fig. 4, we consider

the same system with frequencies, but now with
rather than cell sites, and rather than
users, scaled up by factor 16 as well. This increases the size of
the collective state space by a factor 70 , again rendering it
prohibitively time-consuming to generate the global optimum
via an exhaustive search. The results continue to show conver-
gence, although the achievable throughput per user is somewhat
lower now, as the larger number of cells causes a higher degree
of interference. For cross comparison of the convergence rates,
note that a total of 6400 iterations amounts to 100 iterations per
cell, which corresponds to a total of 400 in the previous two
experiments.
In the fourth and final set of experiments presented in Fig. 5,

we consider a system with cell sites, users,
and frequencies, yielding a collective state space of a
size of 4845 . The results again demonstrate convergence, be
it that the larger number of frequencies further slows down the
rate.

V. DISTRIBUTED NONCONCAVE UTILITY MAXIMIZATION IN
MULTIHOP NETWORKS

In this section, we demonstrate how the proposed method-
ology can be applied for distributed nonconcave utility maxi-
mization in multihop networks.

A. Model Description and Problem Formulation

We consider a multihop network with fixed routing, where
links labeled by and users indexed by .
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Fig. 4. Each chart consists of three curves: 1) the current solution resulting
from the CGS algorithm (light dashed line); 2) the candidate solution, which is
considered but not necessarily accepted by CGS (dotted line; coinciding with
the light and black lines); and 3) the best solution found up to given iteration
(black dashed line). The charts correspond to frequencies,
cell sites, and users, for a (a) hexagonal and (b) irregular cell site
placement.

Fig. 5. Each chart consists of three curves: 1) the current solution resulting
from the CGS algorithm (light dashed line); 2) the candidate solution, which is
considered but not necessarily accepted by CGS (dotted line); and 3) the best
solution found up to given iteration (black dashed line). The charts correspond
to frequencies, cell sites, and users, for a
(a) hexagonal and (b) irregular cell site placement.

Each user has three attributes: 1) a throughput ,
which takes values in a finite set of nonnegative real numbers,
; 2) a throughput utility function . We stress the fact that

this function may be nonconcave. Similar to the application in

wireless cellular networks, a concave utility function may be in-
dicative of a best-effort user, while a nonconcave function, e.g.,
an “S-shaped” function, may be indicative of a delay-sensitive
user; 3) a fixed route (sequence of links) along which the traffic
of the user is carried.
We denote by the 0–1 user-link incidence matrix, with

being equal to one if link is traversed by the traffic of user ,
and zero otherwise. The route set

consists of all the links traversed by the data flow of user , and
the set

contains all the users whose data flows traverse link .
We denote by

the total throughput to be carried on link . The feasible
values are assumed to be characterized by capacity con-

straints: If is the set of links associated with the th con-
straint, and represents the total throughputs of the links in
, then the capacity constraints take the generic form

where . For now, we only make the natural
monotonicity assumption that each of the functions is de-
creasing in all arguments. We also use

to denote the set of all constraints in which link is involved.
This framework covers the special case of fixed link capac-

ities , where , as is
common in wireline networks with noninterfering transmission
links. However, it also allows for modeling interfering links in
wireless networks with power control, where the sustainable
throughputs on the various links are mutually dependent.
It is worth observing that the functions may also be

used to capture “soft” capacity constraints, e.g., average delay
bounds. For example, in the special case of fixed link capacities

, we could adopt

as a proxy for the average delay experienced on link as function
of the total carried throughput on that link, and define

to impose an upper bound on the average end-to-end delay
of user . This is similar in spirit to the problem considered
in [20].
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The goal is to maximize the sum of the users’ throughput
utility functions, subject to the given capacity constraints

maximize

subject to

Throughout the remainder of the section, we tacitly assume that
the above problem has at least one feasible solution.
The problem may be rewritten in the form

maximize

subject to

where and is a large positive
constant.

B. Distributed Method for Throughput Utility Maximization

We now describe how the throughput utility maximization
problem formulated above can be couched into the proposed
methodological framework for distributed optimization.
In view of the structure of the objective function, we define

the set of nodes to comprise the set of users as well
as the set of link capacity constraints. The local state variable of
a node is the throughput of the associated user, , and
the corresponding local state space is . Nodes do not
have any local state variables.
A user and a link capacity constraint are neigh-

bors when , i.e., the th capacity constraint involves
a link that is traversed by user . Thus, the neighborhood set of
a node is

and the neighborhood set of a node is

Consequently, the two-tier neighborhood of node is

consisting of all the link capacity constraints that involve a link
traversed by user , along with all other users that traverse a link
that is involved in any of these constraints. Also, the two-tier
neighborhood of a node is

consisting of all the users that traverse a link that is involved in
the th constraint, along with all other constraints that involve
a link that is traversed by any of these users.
The local objective function of a node is , and

the local objective function of a node is . With
the above definitions, the global objective function may indeed
be written as sum of the local objective functions, and the CGS
algorithm can be applied as specified in Section III. Note that the
local state spaces of users are one-dimensional for the particular
problem, which implies that the CGS algorithm reduces to the
original Gibbs Sampler.
In the special case of fixed link capacities, there is a

one-to-one correspondence between the set of links and
the set of capacity constraints . Therefore, and

, and the above neighborhood sets reduce to
and . Moreover, the two-tier neighborhoods reduce to

and

Finally, the local objective function of node reduces to
.

We emphasize the distributed nature of the operation, in the
sense that a local update of user only relies on the throughput of
the user itself, and the throughputs of the users in
a two-tier neighborhood. The latter dependence arises through
the link throughputs , where .
The actual size of the set of links strongly depends on the
nature of the link capacity constraints. When the individual link
capacity constraints are local in the sense that they only involve
a single link, then the set of links coincides with , the route
set consisting of the links traversed by the data flow of user .
On the other hand, when the link capacity constraints are global
in the sense that they involve most or all of the links, then the
set could contain most, if not all, the network links.

VI. CONCLUSION

In this paper, we proposed a general methodology for dis-
tributed optimization in locally coupled systems. In contrast
to earlier studies, our method does not rely on any on con-
vexity/concavity assumptions and accommodates arbitrary
utility functions as well as integrality constraints. We applied
the proposed approach to a joint power allocation and user
assignment problem arising in wireless OFDMA cellular net-
works and to a rate allocation problem arising in multihop
wireline networks. We established analytically the convergence
of this algorithm and presented numerical experiments to
illustrate its overall performance.
Future work involves further numerical experiments to ex-

amine how the rate of convergence depends on the temperature
value and other design parameters used in the local update algo-
rithm. Also, in the present paper, we have assumed a static user
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population with fixed channel gains. A crucial direction for fu-
ture work is to extend the approach to scenarios with a dynamic
user population (due to arrivals and departures) and random
variations in channel gains (due to fading and user mobility).
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